Difference between revisions of "Relationship between Chebyshev T and Gegenbauer C"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$T_n(x)=\dfr...")
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between Chebyshev T and Gegenbauer C|Theorem]]:</strong> The following formula holds:
+
The following formula holds for $m,n \in \{0,1,2,\ldots\}$:
 
$$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda}; n\geq 1,$$
 
$$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda}; n\geq 1,$$
where $T_n$ denotes a [[Chebyshev T]] polynomial and $C_n^{\lambda}$ denotes a [[Gegenbauer C]] polynomial.
+
where $T_n$ denotes a [[Chebyshev T|Chebyshev polynomial of the first kind]] and $C_n^{\lambda}$ denotes a [[Gegenbauer C]] polynomial.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 22:33, 19 December 2017

Theorem

The following formula holds for $m,n \in \{0,1,2,\ldots\}$: $$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda}; n\geq 1,$$ where $T_n$ denotes a Chebyshev polynomial of the first kind and $C_n^{\lambda}$ denotes a Gegenbauer C polynomial.

Proof

References