Difference between revisions of "Relationship between Chebyshev T and Gegenbauer C"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following formula holds for $m,n \in \{0,1,2,\ldots\}$:
+
The following formula holds for $n \in \{1,2,3,\ldots\}$:
$$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda}; n\geq 1,$$
+
$$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda},$$
 
where $T_n$ denotes a [[Chebyshev T|Chebyshev polynomial of the first kind]] and $C_n^{\lambda}$ denotes a [[Gegenbauer C]] polynomial.
 
where $T_n$ denotes a [[Chebyshev T|Chebyshev polynomial of the first kind]] and $C_n^{\lambda}$ denotes a [[Gegenbauer C]] polynomial.
  

Latest revision as of 22:33, 19 December 2017

Theorem

The following formula holds for $n \in \{1,2,3,\ldots\}$: $$T_n(x)=\dfrac{n}{2} \displaystyle\lim_{\lambda \rightarrow 0} \dfrac{C_n^{\lambda}(x)}{\lambda},$$ where $T_n$ denotes a Chebyshev polynomial of the first kind and $C_n^{\lambda}$ denotes a Gegenbauer C polynomial.

Proof

References