Difference between revisions of "Relationship between Hurwitz zeta and gamma function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\Gamma(s...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Relationship between Hurwitz zeta and gamma function|Theorem]]:</strong> The following formula holds:
 
<strong>[[Relationship between Hurwitz zeta and gamma function|Theorem]]:</strong> The following formula holds:
$$\Gamma(s)\zeta(s,a) = \displaystyle\int_0^{\infty} \dfrac{x^{s-1}e^{-ax}}{1-e^{-x}} dx,$$
+
$$\Gamma(s)\zeta(s,a) = \displaystyle\int_0^{\infty} \dfrac{x^{s-1}e^{-ax}}{1-e^{-x}} \mathrm{d}x,$$
 
where $\Gamma$ denotes the [[gamma function]] and $\zeta$ denotes the [[Hurwitz zeta]] function.  
 
where $\Gamma$ denotes the [[gamma function]] and $\zeta$ denotes the [[Hurwitz zeta]] function.  
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 23:42, 23 May 2016

Theorem: The following formula holds: $$\Gamma(s)\zeta(s,a) = \displaystyle\int_0^{\infty} \dfrac{x^{s-1}e^{-ax}}{1-e^{-x}} \mathrm{d}x,$$ where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Hurwitz zeta function.

Proof: