Difference between revisions of "Relationship between coth and csch"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{coth} \left( \dfrac{z}{2} \right) - \mathrm{coth}(z) = \m...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Relationship between coth and csch|Theorem]]:</strong> The following formula holds:
 
$$\mathrm{coth} \left( \dfrac{z}{2} \right) - \mathrm{coth}(z) = \mathrm{csch}(z),$$
 
$$\mathrm{coth} \left( \dfrac{z}{2} \right) - \mathrm{coth}(z) = \mathrm{csch}(z),$$
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]].
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]] and $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]].

Revision as of 22:42, 30 May 2016

Theorem: The following formula holds: $$\mathrm{coth} \left( \dfrac{z}{2} \right) - \mathrm{coth}(z) = \mathrm{csch}(z),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent and $\mathrm{csch}$ denotes the hyperbolic cosecant.

Proof: