Difference between revisions of "Relationship between prime zeta, Möbius function, logarithm, and Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zet...")
 
Line 2: Line 2:
 
<strong>Theorem:</strong> The following formula holds:
 
<strong>Theorem:</strong> The following formula holds:
 
$$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$
 
$$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$
where $\mu$ denotes the [[Möbius]] function, $\log$ denotes the [[logarithm]], and $\zeta$ denotes the [[Riemann zeta function]].
+
where $P$ denotes the [[Prime zeta function]], $\mu$ denotes the [[Möbius]] function, $\log$ denotes the [[logarithm]], and $\zeta$ denotes the [[Riemann zeta function]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 23:06, 6 May 2015

Theorem: The following formula holds: $$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$ where $P$ denotes the Prime zeta function, $\mu$ denotes the Möbius function, $\log$ denotes the logarithm, and $\zeta$ denotes the Riemann zeta function.

Proof: