Difference between revisions of "Relationship between prime zeta, Möbius function, logarithm, and Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>Theorem:</strong> The following formula holds:
+
The following formula holds:
 
$$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$
 
$$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$
 
where $P$ denotes the [[Prime zeta function]], $\mu$ denotes the [[Möbius]] function, $\log$ denotes the [[logarithm]], and $\zeta$ denotes the [[Riemann zeta function]].
 
where $P$ denotes the [[Prime zeta function]], $\mu$ denotes the [[Möbius]] function, $\log$ denotes the [[logarithm]], and $\zeta$ denotes the [[Riemann zeta function]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 19:31, 15 June 2016

Theorem

The following formula holds: $$P(z)=\displaystyle\sum_{k=1}^{\infty} \dfrac{\mu(k)}{k} \log \zeta(kz),$$ where $P$ denotes the Prime zeta function, $\mu$ denotes the Möbius function, $\log$ denotes the logarithm, and $\zeta$ denotes the Riemann zeta function.

Proof

References