Difference between revisions of "Relationship between sinh and hypergeometric 0F1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\sinh(az)=az...")
 
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between sinh and hypergeometric 0F1|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\sinh(az)=az {}_0F_1 \left( ; \dfrac{3}{2} ; \dfrac{(az)^2}{4} \right),$$
 
$$\sinh(az)=az {}_0F_1 \left( ; \dfrac{3}{2} ; \dfrac{(az)^2}{4} \right),$$
 
where $\sinh$ denotes the [[sinh|hyperbolic sine]] and ${}_0F_1$ denotes the [[hypergeometric pFq]].
 
where $\sinh$ denotes the [[sinh|hyperbolic sine]] and ${}_0F_1$ denotes the [[hypergeometric pFq]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:53, 8 June 2016

Theorem

The following formula holds: $$\sinh(az)=az {}_0F_1 \left( ; \dfrac{3}{2} ; \dfrac{(az)^2}{4} \right),$$ where $\sinh$ denotes the hyperbolic sine and ${}_0F_1$ denotes the hypergeometric pFq.

Proof

References