Difference between revisions of "Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$C_n^{\lambda}(x)=\dfrac{\Gamma(\lambda+\frac{1}{2})\Gamma(n+2\lam...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials|Theorem]]:</strong> The following formula holds:
 
$$C_n^{\lambda}(x)=\dfrac{\Gamma(\lambda+\frac{1}{2})\Gamma(n+2\lambda)}{\Gamma(2\lambda)\Gamma(n+\lambda+\frac{1}{2})}P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}(x),$$
 
$$C_n^{\lambda}(x)=\dfrac{\Gamma(\lambda+\frac{1}{2})\Gamma(n+2\lambda)}{\Gamma(2\lambda)\Gamma(n+\lambda+\frac{1}{2})}P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}(x),$$
 
where $C_n$ denotes a [[Gegenbauer C]] polynomial and $P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}$ denotes a [[Jacobi P]] polynomial.
 
where $C_n$ denotes a [[Gegenbauer C]] polynomial and $P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}$ denotes a [[Jacobi P]] polynomial.

Revision as of 06:55, 10 June 2015

Theorem: The following formula holds: $$C_n^{\lambda}(x)=\dfrac{\Gamma(\lambda+\frac{1}{2})\Gamma(n+2\lambda)}{\Gamma(2\lambda)\Gamma(n+\lambda+\frac{1}{2})}P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}(x),$$ where $C_n$ denotes a Gegenbauer C polynomial and $P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}$ denotes a Jacobi P polynomial.

Proof: