Difference between revisions of "Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$C_n^{\lambda}(x)=\dfrac{\Gamma(\lambda+\frac{1}{2})\Gamma(n+2\lambda)}{\Gamma(2\lambda)\Gamma(n+\lambda+\frac{1}{2})}P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}(x),$$
 
$$C_n^{\lambda}(x)=\dfrac{\Gamma(\lambda+\frac{1}{2})\Gamma(n+2\lambda)}{\Gamma(2\lambda)\Gamma(n+\lambda+\frac{1}{2})}P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}(x),$$
 
where $C_n$ denotes a [[Gegenbauer C]] polynomial and $P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}$ denotes a [[Jacobi P]] polynomial.
 
where $C_n$ denotes a [[Gegenbauer C]] polynomial and $P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}$ denotes a [[Jacobi P]] polynomial.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:44, 16 June 2016

Theorem

The following formula holds: $$C_n^{\lambda}(x)=\dfrac{\Gamma(\lambda+\frac{1}{2})\Gamma(n+2\lambda)}{\Gamma(2\lambda)\Gamma(n+\lambda+\frac{1}{2})}P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}(x),$$ where $C_n$ denotes a Gegenbauer C polynomial and $P_n^{(\lambda-\frac{1}{2},\lambda-\frac{1}{2})}$ denotes a Jacobi P polynomial.

Proof

References