Difference between revisions of "Riemann xi"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
  
 
[[File:Complex Riemann Xi.jpg|500px]]
 
[[File:Complex Riemann Xi.jpg|500px]]
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The values of $\xi$ are known at even integers:
 +
$$\xi(2n) = \dfrac{(-1)^{n+1}}{(2n)!}B_{2n}2^{2n-1}\pi^n (2n^2-n)(n-1)!,$$
 +
where $B_n$ is the $n$th [[Bernoulli number]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>

Revision as of 17:36, 19 February 2015

The Riemann $\xi$ function is defined by the formula $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Riemann zeta function.

Complex Riemann Xi.jpg

Properties

Theorem: The values of $\xi$ are known at even integers: $$\xi(2n) = \dfrac{(-1)^{n+1}}{(2n)!}B_{2n}2^{2n-1}\pi^n (2n^2-n)(n-1)!,$$ where $B_n$ is the $n$th Bernoulli number.

Proof: