Difference between revisions of "Riemann xi"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 4: Line 4:
  
 
[[File:Complex Riemann Xi.jpg|500px]]
 
[[File:Complex Riemann Xi.jpg|500px]]
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The values of $\xi$ are known at even integers:
 
$$\xi(2n) = \dfrac{(-1)^{n+1}}{(2n)!}B_{2n}2^{2n-1}\pi^n (2n^2-n)(n-1)!,$$
 
where $B_n$ is the $n$th [[Bernoulli number]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following series expansion holds:
 
$$\dfrac{d}{dz} \log \xi\left( \dfrac{-z}{1-z} \right) = \displaystyle\sum_{k=0}^{\infty} \lambda_{k+1}z^k,$$
 
where
 
$$\lambda_k = \dfrac{1}{(n-1)!} \dfrac{d^k}{ds^k} \left[ s^{k-1} \log \xi(s) \right] \Bigg|_{s=1} = \displaystyle\sum_{\rho} \left[ 1 - \left(1 - \dfrac{1}{\rho} \right)^n \right],$$
 
where this sum is over $\rho$, the non-trivial zeros of the [[Riemann zeta function]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 

Revision as of 20:33, 19 February 2015

The Riemann $\xi$ function is defined by the formula $$\xi(z)=\dfrac{z}{2}(z-1)\pi^{-\frac{z}{2}}\Gamma\left(\dfrac{z}{2}\right)\zeta(z),$$ where $\Gamma$ denotes the gamma function and $\zeta$ denotes the Riemann zeta function.

Complex Riemann Xi.jpg