Difference between revisions of "Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$\zeta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z}.$$
 
$$\zeta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z}.$$
  
[[File:Riemannzeta.png|500px]]
+
<div align="center">
 
+
<gallery>
[[File:Complex zeta.jpg|500px]]
+
File:Riemannzeta.png|Graph of $\zeta$ on $[-5,5]$.
 
+
File:Complex zeta.jpg|[[Domain coloring]] of [[analytic continuation]] of $\zeta$.
 +
</gallery>
 +
</div>
 
==Properties==
 
==Properties==
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 06:18, 11 February 2015

Consider the function $\zeta$ defined by the series $$\zeta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z}.$$

Properties

Proposition: If $\mathrm{Re} \hspace{2pt} z > 1$, then the series defining $\zeta(z)$ converges.

Proof:

Proposition (Euler Product): $\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}}$

Proof:

Proposition: Let $n$ be a positive integer. Then $$\zeta(2n)=(-1)^{n+1}\dfrac{B_{2n}(2\pi)^{2n}}{2(2n)!},$$ where $B_n$ denotes the Bernoulli numbers.

Proof:

External links