Difference between revisions of "Scorer Gi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "=See Also= Airy Ai<br /> Airy Bi<br /> Scorer Hi<br >")
 
Line 1: Line 1:
 +
The Scorer $\mathrm{Gi}$ function is a solution of the [[differential equation]] $y''(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula
 +
$$\mathrm{Gi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \sin \left( \dfrac{t^3}{3}+xt \right)dt.$$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\mathrm{Gi}(x)=\mathrm{Bi}(x)\displaystyle\int_x^{\infty} \mathrm{Ai}(t)dt + \mathrm{Ai}(x)\displaystyle\int_0^x \mathrm{Bi}(t)dt,$$
 +
where $\mathrm{Gi}$ denotes the [[Scorer Gi]] function, $\mathrm{Ai}$ denotes the [[Airy Ai]] function, and $\mathrm{Bi}$ denotes the [[Airy Bi]] function.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
=See Also=
 
=See Also=
 
[[Airy Ai]]<br />
 
[[Airy Ai]]<br />
 
[[Airy Bi]]<br />
 
[[Airy Bi]]<br />
 
[[Scorer Hi]]<br >
 
[[Scorer Hi]]<br >

Revision as of 17:28, 31 December 2015

The Scorer $\mathrm{Gi}$ function is a solution of the differential equation $y(x)-x y(x)=\dfrac{1}{\pi}$ and may be defined by the formula $$\mathrm{Gi}(x)=\dfrac{1}{\pi} \displaystyle\int_0^{\infty} \sin \left( \dfrac{t^3}{3}+xt \right)dt.$$

Properties

Theorem: The following formula holds: $$\mathrm{Gi}(x)=\mathrm{Bi}(x)\displaystyle\int_x^{\infty} \mathrm{Ai}(t)dt + \mathrm{Ai}(x)\displaystyle\int_0^x \mathrm{Bi}(t)dt,$$ where $\mathrm{Gi}$ denotes the Scorer Gi function, $\mathrm{Ai}$ denotes the Airy Ai function, and $\mathrm{Bi}$ denotes the Airy Bi function.

Proof:

See Also

Airy Ai
Airy Bi
Scorer Hi