Difference between revisions of "Series for log(z) for absolute value of (z-1) less than 1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $|z-1| \leq 1$ and $z \neq 0$: $$\log(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^k(z-1)^k}{k},$$ where $\log(z)$ denotes the...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds for $|z-1| \leq 1$ and $z \neq 0$:
 
The following formula holds for $|z-1| \leq 1$ and $z \neq 0$:
$$\log(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^k(z-1)^k}{k},$$
+
$$\log(z) = -\displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^k(z-1)^k}{k},$$
 
where $\log(z)$ denotes the [[logarithm]].
 
where $\log(z)$ denotes the [[logarithm]].
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Series for log(z) for Re(z) greater than 1/2|next=}}: 4.1.26
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Series for log(z) for Re(z) greater than 1/2|next=Series for log(z) for Re(z) greater than 0}}: $4.1.26$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 17:28, 27 June 2016

Theorem

The following formula holds for $|z-1| \leq 1$ and $z \neq 0$: $$\log(z) = -\displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^k(z-1)^k}{k},$$ where $\log(z)$ denotes the logarithm.

Proof

References