Difference between revisions of "Spherical Bessel j"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The spherical Bessel function of the first kind is defined by $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ where $J_{\nu}$ denotes the Bessel J sub nu|Bess...")
 
Line 2: Line 2:
 
$$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$
 
$$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$
 
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
 
where $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$1=\displaystyle\sum_{k=0}^{\infty} (2k+1)j_k(z)^2.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>

Revision as of 05:28, 16 May 2015

The spherical Bessel function of the first kind is defined by $$j_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}}J_{\nu + \frac{1}{2}}(z),$$ where $J_{\nu}$ denotes the Bessel function of the first kind.

Properties

Theorem: The following formula holds: $$1=\displaystyle\sum_{k=0}^{\infty} (2k+1)j_k(z)^2.$$

Proof: