Difference between revisions of "Struve function"

From specialfunctionswiki
Jump to: navigation, search
Line 17: Line 17:
 
</div>
 
</div>
  
{{:Relationship between Struve function and hypergeometric pFq}}
+
[[Relationship between Struve function and hypergeometric pFq]]<br />
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
Line 27: Line 27:
 
</div>
 
</div>
  
{{:Relationship between Weber function 0 and Struve function 0}}
+
[[Relationship between Weber function 0 and Struve function 0]]<br />
{{:Relationship between Weber function 1 and Struve function 1}}
+
[[Relationship between Weber function 1 and Struve function 1]]<br />
  
 
=References=
 
=References=

Revision as of 13:17, 25 June 2016

The Struve functions are defined by $$\mathbf{H}_{\nu}(z)=\left(\dfrac{z}{2}\right)^{\nu+1} \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k\left(\frac{z}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$$


Properties

Theorem: If $x >0$ and $\nu \geq \dfrac{1}{2}$, then $\mathbf{H}_{\nu}(x) \geq 0$.

Proof:

Relationship between Struve function and hypergeometric pFq

Theorem: The Struve function $H_n$ solves the following nonohomogeneous Bessel differential equation $$x^2y(x)+xy'(x)+(x^2-n^2)y(x)=\dfrac{4(\frac{x}{2})^{n+1}}{\sqrt{\pi}\Gamma(n+\frac{1}{2})}.$$

Proof:

Relationship between Weber function 0 and Struve function 0
Relationship between Weber function 1 and Struve function 1

References

Struve functions in Abramowitz&Stegun