Difference between revisions of "Sum of divisors functions written in terms of partition function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\sigma_1(n)=p(n)+\displaystyle\sum_{1 \leq \frac{3k^2 \pm k}{2} \leq n} (-1)^k\dfrac{3k^2 \pm k}{2} p \left(n - \dfrac{3k^2 \pm k}{2...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Recurrence relation for partition function with sum of divisors|next=findme}}: $24.2.1 \mathrm{II}.B.$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Recurrence relation for partition function with sum of divisors|next=Asymptotic formula for partition function}}: $24.2.1 \mathrm{II}.B.$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 20:47, 26 June 2016

Theorem

The following formula holds: $$\sigma_1(n)=p(n)+\displaystyle\sum_{1 \leq \frac{3k^2 \pm k}{2} \leq n} (-1)^k\dfrac{3k^2 \pm k}{2} p \left(n - \dfrac{3k^2 \pm k}{2} \right),$$ where $\sigma_1$ denotes the sum of divisors function and $p$ denotes the partition function.

Proof

References