Difference between revisions of "Sum of sum of divisors function equals product of Riemann zeta for Re(z) greater than k+1"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "__NOTOC__ ==Theorem== The following formula holds for $\mathrm{Re}(z)>k+1$: $$\displaystyle\sum_{k=1}^{\infty} \dfrac{\sigma_n(k)}{k^z} = \zeta(z) \zeta(z-n),$$ where $\sigma_...")
 
 
Line 8: Line 8:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of divisors|next=}}: $24.3.3 I.B.$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum of divisors|next=findme}}: $24.3.3 I.B.$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:18, 25 June 2016

Theorem

The following formula holds for $\mathrm{Re}(z)>k+1$: $$\displaystyle\sum_{k=1}^{\infty} \dfrac{\sigma_n(k)}{k^z} = \zeta(z) \zeta(z-n),$$ where $\sigma_n$ denotes the sum of divisors function and $\zeta$ denotes the Riemann zeta.

Proof

References