Difference between revisions of "Takagi function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by
 
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by
 
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
 
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
 
  
 
<div align="center">
 
<div align="center">
Line 8: Line 7:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The blancmange function is [[continuous]] on $\mathbb{R}$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The Blancmange function is [[nowhere differentiable]] on $\mathbb{R}$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
=References=
 +
[https://pure.ltu.se/ws/files/30923977/LTU-EX-03320-SE.pdf]

Revision as of 23:03, 31 December 2015

Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The blancmange function (also called the Takagi function) is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$

Properties

Theorem: The blancmange function is continuous on $\mathbb{R}$.

Proof:

Theorem: The Blancmange function is nowhere differentiable on $\mathbb{R}$.

Proof:

References

[1]