Difference between revisions of "Taylor series of sine"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Proposition:</strong> $\sin$$(x)=\displaystyle\sum_{k=0}^{\...")
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Taylor series of sine|Proposition]]:</strong> [[Sine|$\sin$]]$(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^kx^{2k+1}}{(2k+1)!}$
+
Let $z_0 \in \mathbb{C}$. The following [[Taylor series]] holds:
<div class="mw-collapsible-content">
+
$$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k+1}}{(2k+1)!},$$
<strong>Proof:</strong> █
+
where $\sin$ denotes the [[sine]] function.
</div>
+
 
</div>
+
==Proof==
 +
Using the [[Taylor series of the exponential function]] and the definition of $\sin$,
 +
$$\begin{array}{ll}
 +
\sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\
 +
&= \dfrac{1}{2i} \left[ \displaystyle\sum_{k=0}^{\infty} \dfrac{i^k (z-z_0)^k}{k!} - \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k i^k (z-z_0)^k}{k!} \right] \\
 +
&= \dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k).
 +
\end{array}$$
 +
Note that if $k=2n$ is a positive even integer, then
 +
$$i^k(1-(-1)^k)=i^{2n}(1-(-1)^{2n})=0,$$
 +
and if $k=2n+1$ is a positive odd integer, then
 +
$$i^k(1-(-1)^k)=i^{2n+1}(1-(-1)^{2n+1})=2i(-1)^n.$$
 +
Hence we have derived
 +
$$\begin{array}{ll}
 +
\sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\
 +
&=\displaystyle\sum_{k \mathrm{\hspace{2pt} odd},k>0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\
 +
&= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k+1}}{(2k+1)!},
 +
\end{array}$$  
 +
as was to be shown. █
 +
 
 +
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Latest revision as of 03:19, 1 July 2017

Theorem

Let $z_0 \in \mathbb{C}$. The following Taylor series holds: $$\sin(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k+1}}{(2k+1)!},$$ where $\sin$ denotes the sine function.

Proof

Using the Taylor series of the exponential function and the definition of $\sin$, $$\begin{array}{ll} \sin(z) &= \dfrac{e^{iz}-e^{-iz}}{2i} \\ &= \dfrac{1}{2i} \left[ \displaystyle\sum_{k=0}^{\infty} \dfrac{i^k (z-z_0)^k}{k!} - \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k i^k (z-z_0)^k}{k!} \right] \\ &= \dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k). \end{array}$$ Note that if $k=2n$ is a positive even integer, then $$i^k(1-(-1)^k)=i^{2n}(1-(-1)^{2n})=0,$$ and if $k=2n+1$ is a positive odd integer, then $$i^k(1-(-1)^k)=i^{2n+1}(1-(-1)^{2n+1})=2i(-1)^n.$$ Hence we have derived $$\begin{array}{ll} \sin(z)&=\dfrac{1}{2i} \displaystyle\sum_{k=0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\ &=\displaystyle\sum_{k \mathrm{\hspace{2pt} odd},k>0}^{\infty} \dfrac{(z-z_0)^k}{k!}i^k (1-(-1)^k) \\ &= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k+1}}{(2k+1)!}, \end{array}$$ as was to be shown. █

References