Difference between revisions of "Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $x\geq 0$: $$\dfrac{1}{x+\sqrt{x^2+2}}< e^{x^2} \displaystyle\int_x^{\infty} e^{-t^2} \mathrm{d}t \leq \dfrac{1}{x+\sqrt{x^2+\frac{...")
 
 
Line 2: Line 2:
 
The following formula holds for $x\geq 0$:
 
The following formula holds for $x\geq 0$:
 
$$\dfrac{1}{x+\sqrt{x^2+2}}< e^{x^2} \displaystyle\int_x^{\infty} e^{-t^2} \mathrm{d}t \leq \dfrac{1}{x+\sqrt{x^2+\frac{4}{\pi}}},$$
 
$$\dfrac{1}{x+\sqrt{x^2+2}}< e^{x^2} \displaystyle\int_x^{\infty} e^{-t^2} \mathrm{d}t \leq \dfrac{1}{x+\sqrt{x^2+\frac{4}{\pi}}},$$
where $e^{x^2}$ denotes the [[exponential]], and $\pi$ denotes [[\pi]].
+
where $e^{x^2}$ denotes the [[exponential]], and $\pi$ denotes [[pi]].
 
==Proof==
 
==Proof==
  

Latest revision as of 01:53, 6 June 2016

Theorem

The following formula holds for $x\geq 0$: $$\dfrac{1}{x+\sqrt{x^2+2}}< e^{x^2} \displaystyle\int_x^{\infty} e^{-t^2} \mathrm{d}t \leq \dfrac{1}{x+\sqrt{x^2+\frac{4}{\pi}}},$$ where $e^{x^2}$ denotes the exponential, and $\pi$ denotes pi.

Proof

References