Difference between revisions of "Value of polygamma at positive integer"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$ where $\psi^{(m)}$ denote...")
 
(References)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following formula holds:
+
The following formula holds for $n=1,2,\ldots$:
 
$$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$
 
$$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$
 
where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]], and $\zeta(m+1)$ denotes the [[Riemann zeta]].
 
where $\psi^{(m)}$ denotes the [[polygamma]], $m!$ denotes the [[factorial]], and $\zeta(m+1)$ denotes the [[Riemann zeta]].
Line 6: Line 6:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at 1|next=}}: 6.4.3
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Value of polygamma at 1|next=Value of polygamma at 1/2}}: $6.4.3$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 22:45, 17 March 2017

Theorem

The following formula holds for $n=1,2,\ldots$: $$\psi^{(m)}(n+1)=(-1)^m m! \left[ -\zeta(m+1)+1 + \dfrac{1}{2^{m+1}}+\ldots + \dfrac{1}{n^{m+1}} \right],$$ where $\psi^{(m)}$ denotes the polygamma, $m!$ denotes the factorial, and $\zeta(m+1)$ denotes the Riemann zeta.

Proof

References