Difference between revisions of "Z coth(z) = sum of 2^(2n)B (2n) z^(2n)/(2n)!"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds for $|z| < \pi$: $$z \mathrm{coth}(z) = \displaystyle\sum_{k=0}^{\infty} 2^{2k} B_{2k} \dfrac{z^{2k}}{(2k)!},$$ where $\mathrm{coth}$...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Z coth(z) = 2z/(e^(2z)-1) + z|next=findme}}: $\S 1.20 (2)$
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Arthur Erdélyi|author2=Wilhelm Magnus|author3=Fritz Oberhettinger|author4=Francesco G. Tricomi|prev=Z coth(z) = 2z/(e^(2z)-1) + z|next=Z coth(z) = 2 Sum of (-1)^(n+1) zeta(2n) z^(2n)/pi^(2n)}}: $\S 1.20 (2)$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 06:03, 4 March 2018

Theorem

The following formula holds for $|z| < \pi$: $$z \mathrm{coth}(z) = \displaystyle\sum_{k=0}^{\infty} 2^{2k} B_{2k} \dfrac{z^{2k}}{(2k)!},$$ where $\mathrm{coth}$ denotes hyperbolic cotangent, $B_{2k}$ denotes Bernoulli numbers, and $(2k)!$ denotes factorial.

Proof

References