(n+1)L (n+1)(x) = (2n+1-x)L n(x)-nL (n-1)(x)

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$(n+1)L_{n+1}(x)=(2n+1-x)L_n(x)-nL_{n-1}(x),$$ where $L_{n+1}$ denotes Laguerre L.

Proof

References