(n+1)L (n+1)(x) = (2n+1-x)L n(x)-nL (n-1)(x)
From specialfunctionswiki
Theorem
The following formula holds: $$(n+1)L_{n+1}(x)=(2n+1-x)L_n(x)-nL_{n-1}(x),$$ where $L_{n+1}$ denotes Laguerre L.
Proof
References
- 1968: W.W. Bell: Special Functions for Scientists and Engineers ... (previous) ... (next): Theorem 6.5 (i)