(n+2)C (n+2)^(lambda)(x)=2(lambda+n+1)xC (n+1)^(lambda)(x)-(2lambda+n)C n^(lambda)(x)
From specialfunctionswiki
Theorem
The following formula holds: $$(n+2)C_{n+2}^{\lambda}(x)=2(\lambda+n+1)xC_{n+1}^{\lambda}(x)-(2\lambda+n)C_n^{\lambda}(x),$$ where $C_{n+2}^{\lambda}$ denotes Gegenbauer C.