2F1(1,1;2;z)=-log(1-z)/z
From specialfunctionswiki
Theorem
The following formula holds: $${}_2F_1 \left( 1,1 ; 2 ; z \right) = -\dfrac{\log(1-z)}{z},$$ where ${}_2F_1$ denotes the hypergeometric 2F1 and $\log$ denotes the logarithm.
Proof
References
- 1964: {{ #if: |{{{2}}}|Milton Abramowitz}}{{#if: Irene A. Stegun|{{#if: |, {{ #if: |{{{2}}}|Irene A. Stegun}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Irene A. Stegun}}}}|}}: [[Book:Milton Abramowitz/Handbook of mathematical functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Handbook of mathematical functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Limit of (1/Gamma(c))*2F1(a,b;c;z) as c approaches -m | ... (previous)|}}{{#if: 2F1(1/2,1;3/2;z^2)=log((1+z)/(1-z))/(2z) | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $15.1.3$