Antiderivative of arccosh

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$\displaystyle\int \mathrm{arccosh}(z) \mathrm{d}z = z \mathrm{arccosh}(z)-\sqrt{z-1}\sqrt{z+1}+C,$$ where $\mathrm{arccosh}$ denotes the inverse hyperbolic cosine.

Proof

References