Beta in terms of sine and cosine

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$B(x,y)=2 \displaystyle\int_0^{\frac{\pi}{2}} (\sin t)^{2x-1}(\cos t)^{2y-1} \mathrm{d}t,$$ where $B$ denotes the beta function, $\sin$ denotes the sine function, and $\cos$ denotes the cosine function.

Proof

From the definition, $$B(x,y)=\displaystyle\int_0^1 \xi^{x-1} (1-\xi)^{y-1} \mathrm{d}\xi.$$ Let $\xi=\sin^2(t)$. Then $d\xi = 2\sin(t)\cos(t)$. Also if $\xi=0$ then $0=\sin^2(t)$ implies that $t=\arcsin(0)=0$ and if $\xi=1$, then $1=\sin^2(t)$ implies $t=\arcsin(1)=\dfrac{\pi}{2}$. Therefore using substitution and the Pythagorean identity for sin and cos, $$\begin{array}{ll} B(x,y) &= \displaystyle\int_0^1 \xi^{x-1}(1-\xi)^{y-1} \mathrm{d}\xi \\ &= \displaystyle\int_0^{\frac{\pi}{2}} (\sin(t))^{2x-2} (1-\sin^2(t))^{y-1} 2 \sin(t)\cos(t) \mathrm{d}t \\ &= 2 \displaystyle\int_0^{\frac{\pi}{2}} (\sin(t))^{2x-1} (\cos(t))^{2y-1} \mathrm{d}t, \end{array}$$ as was to be shown. █

References

  • 1953: {{ #if: |{{{2}}}|Arthur Erdélyi}}{{#if: Wilhelm Magnus|{{#if: Fritz Oberhettinger|, {{ #if: |{{{2}}}|Wilhelm Magnus}}{{#if: Francesco G. Tricomi|, {{ #if: |{{{2}}}|Fritz Oberhettinger}}{{#if: |, {{ #if: |{{{2}}}|Francesco G. Tricomi}}{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and {{ #if: |{{{2}}}|Francesco G. Tricomi}}}}| and {{ #if: |{{{2}}}|Fritz Oberhettinger}}}}| and {{ #if: |{{{2}}}|Wilhelm Magnus}}}}|}}: [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume I{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Higher Transcendental Functions Volume I{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Integral of (1+t)^(2x-1)(1-t)^(2y-1)(1+t^2)^(-x-y)dt=2^(x+y-2)B(x,y) | ... (previous)|}}{{#if: findme | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $\S 1.5 (19)$
  • 1964: {{ #if: |{{{2}}}|Milton Abramowitz}}{{#if: Irene A. Stegun|{{#if: |, {{ #if: |{{{2}}}|Irene A. Stegun}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Irene A. Stegun}}}}|}}: [[Book:Milton Abramowitz/Handbook of mathematical functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Handbook of mathematical functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Beta in terms of power of t over power of (1+t) | ... (previous)|}}{{#if: Beta in terms of gamma | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $6.2.1$