Book:Earl David Rainville/Special Functions
From specialfunctionswiki
Earl David Rainville: Special Functions
Published $1960$, The Macmillan Company, New York.
Contents
- Chapter 1: INFINITE PRODUCTS
- 1. Introduction
- 2. Definition of an infinite product
- 3. A necessary condition for convergence
- 4. The associated series of logarithms
- 5. Absolute convergence
- 6. Uniform convergence
- Chapter 2: THE GAMMA AND BETA FUNCTIONS
- 7. The Euler or Mascheroni constant $\gamma$
- 8. The Gamma function
- 9. A series for $\dfrac{\Gamma'(z)}{\Gamma(z)}$
- 10. Evaluation of $\Gamma(1)$ and $\Gamma'(1)$
- 11. The Euler product for $\Gamma(z)$
- 12. The difference equation $\Gamma(z+1)=z\Gamma(z)$
- 13. The order symbols $o$ and $O$
- 14. Evaluation of certain infinite products
- 15. Euler's integral for $\Gamma(z)$
- 16. The Beta function
- 17. The value of $\Gamma(z)\Gamma(1-z)$
- 18. The factorial function
- 19. Legendre's duplication formula
- 20. Gauss' multiplication theorem
- 21. A summation formula due to Euler
- 22. The behavior of $\log \Gamma(z)$ for large $|z|$
- Chapter 3: ASYMPTOTIC SERIES
- 23. Definition of an asymptotic expansion
- 24. Asymptotic expansions about infinity
- 25. Algebraic properties
- 26. Term-by-term integration
- 27. Uniqueness
- 28. Watson's lemma
- Chapter 4: THE HYPERGEOMETRIC FUNCTION
- 29. The function $F(a,b;c;z)$
- 30. A simple integral form
- 31. $F(a,b;c;1)$ as a function of the parameters
- 32. Evaluation of $F(a,b;c;1)$
- 33. The contiguous function relations
- 34. The hypergeometric differential equation
- 35. Logarithmic solutions of the hypergeometric equation
- 36. $F(a,b;c;z)$ as a function of its parameters
- 37. Elementary series manipulations
- 38. Simple transformations
- 39. Relation between functions of $z$ and $1-z$
- 40. A quadratic transformation
- 41. Other quadratic transformations
- 42. A theorem due to Kummer
- 43. Additional properties
- Chapter 5: GENERALIZED HYPERGEOMETRIC FUNCTIONS
- 44. The function ${}_pF_q$
- 45. The exponential and binomial functions
- 46. A differential equation
- 47. Other solutions of the differential equation
- 48. The contiguous function relations
- 49. A simple integral
- 50. The ${}_pF_q$ with unit argument
- 51. Saalschütz' theorem
- 52. Whipple's theorem
- 53. Dixon's theorem
- 54. Contour integrals of Barnes' type
- 55. The Barnes integrals and the function ${}_pF_q$
- 56. A useful integral
- Chapter 6: BESSEL FUNCTIONS
- 57. Remarks
- 58. Definition of $J_n(z)$
- 59. Bessel's differential equation
- 60. Differential recurrence relations
- 61. A pure recurrence relation
- 62. A generating function
- 63. Bessel's integral
- 64. Index half an odd integer
- 65. Modified Bessel functions
- 66. Neumann Polynomials
- 67. Neumann series
- Chapter 7: THE CONFLUENT HYPERGEOMETRIC FUNCTION
- 68. Basic properties of ${}_1F_1$
- 69. Kummer's first formula
- 70. Kummer's second formula
- Chapter 8: GENERATING FUNCTIONS
- 71. The generating function concept
- 72. Generating functions of the form $G(2xt-t^2)$
- 73. Sets generated by $e^t \psi(xt)$
- 74. The generating functions $A(t) \exp [-xt/(1-t)]$
- 75. Another class of generating functions
- 76. Boas and Buck generating functions
- 77. An extension
- Chapter 9: ORTHOGONAL POLYNOMIALS
- 78. Simple sets of polynomials
- 79. Orthogonality
- 80. An equivalent condition for orthogonality
- 81. Zeros of orthogonal polynomials
- 82. Expansion of polynomials
- 83. The three-term recurrence relation
- 84. The Christoffel-Darboux formula
- 85. Normalization; Bessel's inequality
- Chapter 10: LEGENDRE POLYNOMIALS
- 86. A generating function
- 87. Differential recurrence relation
- 88. The pure recurrence relation
- 89. Legendre's differential equation
- 90. The Rodrigues formula
- 91. Bateman's generating function
- 92. Additional generating functions
- 93. Hypergeometric forms of $P_n(x)$
- 94. Brafman's generating functions
- 95. Special properties of $P_n(x)$
- 96. More generating functions
- 97. Laplace's first integral form
- 98. Some bounds on $P_n(x)$
- 99. Orthogonality
- 100. An expansion theorem
- 101. Expansion of $x^n$
- 102. Expansion of analytic functions
- Chapter 11: HERMITE POLYNOMIALS
- 103. Definition of $H_n(x)$
- 104. Recurrence relations
- 105. The Rodrigues formula
- 106. Other generating functions
- 107. Integrals
- 108. The Hermite polynomial as a ${}_2F_0$
- 109. Orthogonality
- 110. Expansion of polynomials
- 111. More generating functions
- Chapter 12: LAGUERRE POLYNOMIALS
- 112. The polynomial $L_n^{(\alpha)}(x)$
- 113. Generating functions
- 114. Recurrence relations
- 115. The Rodrigues formula
- 116. The differential equation
- 117. Orthogonality
- 118. Expansion of polynomials
- 119. Special properties
- 120. Other generating functions
- 121. The simple Laguerre polynomials
- Chapter 13: THE SHEFFER CLASSIFICATION AND RELATED TOPICS
- 122. Differential operators and polynomial sets
- 123. Sheffer's $A$-type classification
- 124. Polynomials of Sheffer $A$-type zero
- 125. An extension of Sheffer's classification
- 126. Polynomials of $\sigma$-type zero
- Chapter 14: PURE RECURRENCE RELATIONS
- 127. Sister Celine's technique
- 128. A mild extension
- Chapter 15: SYMBOLIC RELATIONS
- 129. Notation
- 130. Symbolic relations among classical polynomials
- 131. Polynomials of symbolic form $L_n(y(x))$
- Chapter 16: JACOBI POLYNOMIALS
- 132. The Jacobi polynomials
- 133. Bateman's generating function
- 134. The Rodrigues formula
- 135. Orthogonality
- 136. Differential recurrence relations
- 137. The pure recurrence relation
- 138. Mixed relations
- 139. Appell's functions of two variables
- 140. An elementary generating function
- 141. Brafman's generating functions
- 142. Expansion in series of polynomials
- Chapter 17: ULTRASPHERICAL AND GEGENBAUER POLYNOMIALS
- 143. Definitions
- 144. The Gegenbauer polynomials
- 145. The ultraspherical polynomials
- Chapter 18: OTHER POLYNOMIAL SETS
- 146. Bateman's $Z_n(x)$
- 147. Rice's $H_n(\zeta,p,v)$
- 148. Bateman's $F_n(z)$
- 149. Sister Celine's polynomials
- 150. Bessel polynomials
- 151. Bedient's polynomials
- 152. Shively's pseudo-Laguerre and other polynomials
- 153. Bernoulli polynomials
- 154. Euler polynomials
- 155. Tchebicheff polynomials
- Chapter 19: ELLIPTIC FUNCTIONS
- 156. Doubly periodic functions
- 157. Elliptic functions
- 158. Elementary properties
- 159. Order of an elliptic function
- 160. The Weierstrass function $P(z)$
- 161. Other elliptic functions
- 162. A differential equation for $P(z)$
- 163. Connections with elliptic integrals
- Chapter 20: THETA FUNCTIONS
- 164. Definitions
- 165. Elementary properties
- 166. The basic property table
- 167. Location of zeros
- 168. Relations among squares of theta functions
- 169. Pseudo addition theorems
- 170. Relation to the heat equation
- 171. The relation $\theta_1'=\theta_2 \theta_3 \theta_4$
- 172. Infinite products
- 173. The value of $G$
- Chapter 21: JACOBIAN ELLIPTIC FUNCTIONS
- 174. A differential equation involving theta functions
- 175. The function $\mathrm{sn}(u)$
- 176. The functions $\mathrm{cn}(u)$ and $\mathrm{dn}(u)$
- 177. Relations involving squares
- 178. Relations involving derivatives
- 179. Addition theorems
- Bibliography
- Index