Dedekind eta
From specialfunctionswiki
(Redirected from Dedekind eta function)
Let $q=e^{2\pi i z}$, where $z$ is in the upper half plane. We define the Dedekind eta function by the formula $$\eta(z) = e^{\frac{\pi i z}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
- Error creating thumbnail: Unable to save thumbnail to destination
Real part of $\eta$.
- Error creating thumbnail: Unable to save thumbnail to destination
Imaginary part of $\eta$.
Properties
eta(z+1)=e^(i pi/12)eta(z)
eta(-1/z)=sqrt(-iz)eta(z)
References
A collection of over 6200 identities for the Dedekind Eta Function