Derivative of cosecant
From specialfunctionswiki
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z)=- \cot(z)\csc(z),$$ where $\csc$ denotes the cosecant function and $\cot$ denotes the cotangent function.
Proof
Using the quotient rule and the definitions of cosecant and cotangent, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z) &= \dfrac{\mathrm{d}}{\mathrm{d}z} \left[ \dfrac{1}{\sin(z)} \right] \\ &= \dfrac{0-\cos(z)}{\sin^2(z)} \\ &= -\csc(z)\cot(z), \end{array}$$ as was to be shown. █
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.3.108$