Derivative of tangent
From specialfunctionswiki
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \tan(z) = \sec^2(z),$$ where $\tan$ denotes the tangent function and $\sec$ denotes the secant function.
Proof
From the definition, $$\tan(z) = \dfrac{\sin(z)}{\cos(z)},$$ so using the quotient rule, the derivative of sine, the derivative of cosine, the Pythagorean identity for sin and cos, and the definition of secant, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \tan(z) = \dfrac{\mathrm{d}}{\mathrm{d}z} \dfrac{\sin(z)}{\cos(z)} = \dfrac{\cos^2(z) + \sin^2(z)}{\cos^2(z)} = \dfrac{1}{\cos^2(z)} = \sec^2(z),$$ as was to be shown. $\blacksquare$
References
- 1964: {{ #if: |{{{2}}}|Milton Abramowitz}}{{#if: Irene A. Stegun|{{#if: |, {{ #if: |{{{2}}}|Irene A. Stegun}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Irene A. Stegun}}}}|}}: [[Book:Milton Abramowitz/Handbook of mathematical functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Handbook of mathematical functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Derivative of cosine | ... (previous)|}}{{#if: Derivative of cosecant | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $4.3.107$