Euler E
From specialfunctionswiki
(Redirected from Euler polynomial)
The Euler polynomials $E_n(x)$ are orthogonal polynomials defined by $$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$ where $e_k$ denotes an Euler number.
- $E_0(x)=1$
- $E_1(x)=x-\dfrac{1}{2}$
- $E_2(x)=x^2-x$
- $E_3(x)=x^3-\dfrac{3}{2}x^2+\dfrac{1}{4}$
- $E_4(x)=x^4-2x^3+x$
Properties
Euler E generating function
Euler E n'(x)=nE n-1(x)
Theorem: The following formula holds: $$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$
Proof: █