F(2n)=F(n)L(n)
From specialfunctionswiki
Theorem
The following formula holds: $$F(2n)=F(n)L(n),$$ where $F(n)$ denotes a Fibonacci number and $L(n)$ denotes a Lucas number.
The following formula holds: $$F(2n)=F(n)L(n),$$ where $F(n)$ denotes a Fibonacci number and $L(n)$ denotes a Lucas number.