F(n+m+1)=F(n+1)F(m+1)+F(n)F(m)

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$F(n+m+1)=F(n+1)F(m+1)+F(n)F(m),$$ where $F(n)$ denotes a Fibonacci number.

Proof

References