Fibonacci zeta in terms of a sum of binomial coefficients

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$(\sqrt{5})^{-z} F(z)=-\displaystyle\sum_{j=0}^{\infty} (-1)^j {{-z} \choose j} \dfrac{1}{\phi^{z+2j}-(-1)^j} ,$$ where $F(z)$ denotes the Fibonacci zeta function, $\displaystyle{{-z} \choose j}$ denotes a binomial coefficient, and $\phi$ denotes the golden ratio.

Proof

By Binet's formula, $$F_n=\dfrac{\phi^n - (-\phi)^{-n}}{\sqrt{5}}.$$ Using the binomial series, we see that $$\dfrac{1}{F_k^z} = \left( \sqrt{5} \right)^z (\phi^k - (-\phi)^{-k})^{-z}=(\sqrt{5})^z \phi^{-zk} \left( 1 - \dfrac{(-\phi)^{-k}}{\phi^k} \right)^{-z}=(\sqrt{5})^z \phi^{-zk} \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right).$$ Therefore compute $$\begin{array}{ll} (\sqrt{5})^{-z} F(z) &= (\sqrt{5})^{-z} \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{F_k^z} \\ &= (\sqrt{5})^{-z} \displaystyle\sum_{k=1}^{\infty} \displaystyle\sum_{j=0}^{\infty} (\sqrt{5})^z \phi^{-zk} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\ &= \displaystyle\sum_{k=1}^{\infty} \displaystyle\sum_{j=0}^{\infty} \phi^{-zk} {{-z} \choose j} (-1)^j \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right). \end{array}$$ Now we interchange the summations (justify this) and apply the geometric series (justify why it applies) to get $$\begin{array}{ll} (\sqrt{5})^{-z} F(z) &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \phi^{-zk} \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \phi^{-zk} \left( \dfrac{(-\phi)^{-kj}}{\phi^{kj}} \right) \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \displaystyle\sum_{k=1}^{\infty} \left((-1)^j \phi^{-z-2j} \right)^k \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} (-1)^j \dfrac{(-1)^j \phi^{-z-2j}}{1-(-1)^j \phi^{-z-2j}} \\ &= \displaystyle\sum_{j=0}^{\infty} {{-z} \choose j} \dfrac{1}{\phi^{z+2j}-(-1)^j}, \end{array}$$ as was to be shown.

References

  • {{ #if: |{{{2}}}|Maruti Ram Murty}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Paper:Maruti Ram Murty/The Fibonacci Zeta Function{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|The Fibonacci Zeta Function{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}} (1976)| ({{#if: |{{{ed}}} ed., }}1976)}}]]{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Binet's formula | ... (previous)|}}{{#if: findme | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}