Gamma'(z)/Gamma(z)=-gamma-1/z+Sum z/(k(z+k))

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$\dfrac{\Gamma'(z)}{\Gamma(z)} = -\gamma-\dfrac{1}{z}+\displaystyle\sum_{k=1}^{\infty} \dfrac{z}{k(z+k)},$$ where $\Gamma$ denotes gamma, $\gamma$ denotes the Euler-Mascheroni constant, and $\log$ denotes the logarithm.

Proof

References

  • 1960: {{ #if: |{{{2}}}|Earl David Rainville}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Book:Earl David Rainville/Special Functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Special Functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Reciprocal gamma written as an infinite product | ... (previous)|}}{{#if: findme | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $9.(1)$