H (-(n+1/2))(z)=(-1)^n J (n+1/2)(z) for integer n geq 0

From specialfunctionswiki
Jump to: navigation, search

Theorem

If $n \geq 0$ is an integer, then $$\mathbf{H}_{-(n+\frac{1}{2})}(z) = (-1)^n J_{n+\frac{1}{2}}(z),$$ where $\mathbf{H}$ denotes a Struve function and $J$ denotes Bessel J.

Proof

References