Halving identity for sinh
From specialfunctionswiki
Theorem
The following formula holds: $$\sinh \left( \dfrac{z}{2} \right) = \sqrt{ \dfrac{\cosh(z)-1}{2} },$$ where $\sinh$ denotes hyperbolic sine and $\cosh$ denotes hyperbolic cosine.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.5.28$