Hurwitz zeta absolute convergence
From specialfunctionswiki
Theorem
The Hurwitz zeta function $\zeta(s,a)$ is absolutely convergent for all $s$ with $\mathrm{Re}(s)>1$ and $a$ with $\mathrm{Re}(a)>0$.
The Hurwitz zeta function $\zeta(s,a)$ is absolutely convergent for all $s$ with $\mathrm{Re}(s)>1$ and $a$ with $\mathrm{Re}(a)>0$.