Integral of (1+t)^(2x-1)(1-t)^(2y-1)(1+t^2)^(-x-y)dt=2^(x+y-2)B(x,y)
From specialfunctionswiki
Theorem
The following formula holds for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$\displaystyle\int_{-1}^1 (1+t)^{2x-1}(1-t)^{2y-1}(1+t^2)^{-x-y} \mathrm{d}t= 2^{x+y-2}B(x,y),$$ where $B$ denotes the beta function.
Proof
References
- 1953: {{ #if: |{{{2}}}|Arthur Erdélyi}}{{#if: Wilhelm Magnus|{{#if: Fritz Oberhettinger|, {{ #if: |{{{2}}}|Wilhelm Magnus}}{{#if: Francesco G. Tricomi|, {{ #if: |{{{2}}}|Fritz Oberhettinger}}{{#if: |, {{ #if: |{{{2}}}|Francesco G. Tricomi}}{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and {{ #if: |{{{2}}}|Francesco G. Tricomi}}}}| and {{ #if: |{{{2}}}|Fritz Oberhettinger}}}}| and {{ #if: |{{{2}}}|Wilhelm Magnus}}}}|}}: [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume I{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Higher Transcendental Functions Volume I{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Integral of t^(x-1)(1-t^z)^(y-1) dt=(1/z)B(x/z,y) | ... (previous)|}}{{#if: Beta in terms of sine and cosine | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $\S 1.5 (18)$