Integral of (1+t)^(2x-1)(1-t)^(2y-1)(1+t^2)^(-x-y)dt=2^(x+y-2)B(x,y)
From specialfunctionswiki
Theorem
The following formula holds for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$\displaystyle\int_{-1}^1 (1+t)^{2x-1}(1-t)^{2y-1}(1+t^2)^{-x-y} \mathrm{d}t= 2^{x+y-2}B(x,y),$$ where $B$ denotes the beta function.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.5 (18)$