Integral representation of Struve function

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds for $\mathrm{Re}(\nu) > - \dfrac{1}{2}$: $$\mathbf{H}_{\nu}(z) = \dfrac{z^{\nu}}{2^{\nu-1}\sqrt{\pi}\Gamma(\nu+\frac{1}{2})} \displaystyle\int_0^1 (1-t^2)^{\nu-\frac{1}{2}} \sin(zt) \mathrm{d}t,$$ where $\mathbf{H}_{\nu}$ denotes the Struve function, $\pi$ denotes pi, $\Gamma$ denotes the gamma function, and $\sin$ denotes sine.

Proof

References