Integral t^(x-1)(1-t)^(y-1)(1+bt)^(-x-y)dt = (1+b)^(-x)B(x,y)
From specialfunctionswiki
Theorem
The following holds for $b>-1$, $\mathrm{Re}(x)>0$, and $\mathrm{Re}(y)>0$: $$\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1}(1+bt)^{-x-y} \mathrm{d}t = (1+b)^{-x} B(x,y),$$ where $B$ denotes the beta function.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.5 (11)$