Kelvin ker
From specialfunctionswiki
The $\mathrm{ker}_{\nu}$ function is defined as $$\mathrm{ker}_{\nu}(z)=\mathrm{Re} \left[ e^{-\frac{\nu \pi i}{2}} K_{\nu} \left( z e^{\frac{\pi i}{4}} \right) \right],$$ where $\mathrm{Re}$ denotes the real part of a complex number and $K_{\nu}$ denotes the modified Bessel function $K_{\nu}$.
- Error creating thumbnail: Unable to save thumbnail to destination
Graph of $\mathrm{ker}_0$.
- Error creating thumbnail: Unable to save thumbnail to destination
Domain coloring of $\mathrm{ker}_0$.
Properties
References
- 1953: {{ #if: |{{{2}}}|Arthur Erdélyi}}{{#if: Wilhelm Magnus|{{#if: Fritz Oberhettinger|, {{ #if: |{{{2}}}|Wilhelm Magnus}}{{#if: Francesco G. Tricomi|, {{ #if: |{{{2}}}|Fritz Oberhettinger}}{{#if: |, {{ #if: |{{{2}}}|Francesco G. Tricomi}}{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and {{ #if: |{{{2}}}|Francesco G. Tricomi}}}}| and {{ #if: |{{{2}}}|Fritz Oberhettinger}}}}| and {{ #if: |{{{2}}}|Wilhelm Magnus}}}}|}}: [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume II{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Higher Transcendental Functions Volume II{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Kelvin bei | ... (previous)|}}{{#if: Kelvin kei | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $\S 7.2.3 (20)$
Kelvin ker