L(n)^2-5F(n)^2=4(-1)^n
From specialfunctionswiki
Theorem
The following formula holds: $$L(n)^2-5F(n)^2=4(-1)^n,$$ where $L(n)$ denotes the $n$th Lucas number and $F(n)$ denotes the $n$th Fibonacci number.
The following formula holds: $$L(n)^2-5F(n)^2=4(-1)^n,$$ where $L(n)$ denotes the $n$th Lucas number and $F(n)$ denotes the $n$th Fibonacci number.