Li2(z)=zPhi(z,2,1)
From specialfunctionswiki
Theorem
The following formula holds: $$\mathrm{Li}_2(z)=z\Phi(z,2,1),$$ where $\mathrm{Li}_2$ denotes the dilogarithm and $\Phi$ denotes the Lerch transcendent.
Proof
References
- 1953: {{ #if: |{{{2}}}|Arthur Erdélyi}}{{#if: Wilhelm Magnus|{{#if: Fritz Oberhettinger|, {{ #if: |{{{2}}}|Wilhelm Magnus}}{{#if: Francesco G. Tricomi|, {{ #if: |{{{2}}}|Fritz Oberhettinger}}{{#if: |, {{ #if: |{{{2}}}|Francesco G. Tricomi}}{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and {{ #if: |{{{2}}}|Francesco G. Tricomi}}}}| and {{ #if: |{{{2}}}|Fritz Oberhettinger}}}}| and {{ #if: |{{{2}}}|Wilhelm Magnus}}}}|}}: [[Book:Arthur Erdélyi/Higher Transcendental Functions Volume I{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Higher Transcendental Functions Volume I{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Relationship between dilogarithm and log(1-z)/z | ... (previous)|}}{{#if: Li 2(z)=-Li 2(1/z)-(1/2)(log z)^2 + i pi log(z) + pi^2/3 | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $\S 1.11.1 (22)$