Limit of (1/Gamma(c))*2F1(a,b;c;z) as c approaches -m

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$\displaystyle\lim_{c \rightarrow -m} \dfrac{1}{\Gamma(c)} {}_2F_1(a,b;c;z)= \dfrac{(a)_{m+1} (b)_{m+1}}{(m+1)!} z^{m+1} {}_2F_1 \left( a+m+1, b+m+1; m+2; z \right),$$ where $\Gamma$ denotes the gamma function, $(a)_{m+1}$ denotes the Pochhammer symbol, and ${}_2F_1$ denotes the hypergeometric 2F1.

Proof

References

  • 1964: {{ #if: |{{{2}}}|Milton Abramowitz}}{{#if: Irene A. Stegun|{{#if: |, {{ #if: |{{{2}}}|Irene A. Stegun}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Irene A. Stegun}}}}|}}: [[Book:Milton Abramowitz/Handbook of mathematical functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Handbook of mathematical functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Hypergeometric 2F1 | ... (previous)|}}{{#if: 2F1(1,1;2;z)=-log(1-z)/z | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $15.1.2$