Limit of quotient of consecutive Fibonacci numbers
From specialfunctionswiki
Theorem
The following formula holds: $$\displaystyle\lim_{n \rightarrow \infty} \dfrac{F(n+1)}{F(n)}=\varphi,$$ where $F(n)$ denotes the $n$th Fibonacci number and $\varphi$ denotes the golden ratio.
Proof
References
- {{ #if: |{{{2}}}|Edmund Landau}}{{#if: |{{#if: |, [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and [[Mathematician:{{{author2}}}|{{ #if: |{{{2}}}|{{{author2}}}}}]]}}|}}: [[Paper:Edmund Landau/Sur la série des inverse de nombres de Fibonacci{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Sur la série des inverse de nombres de Fibonacci{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}} (1899)| ({{#if: |{{{ed}}} ed., }}1899)}}]]{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Fibonacci numbers | ... (previous)|}}{{#if: Reciprocal Fibonacci constant | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}