Log a(b)=1/log b(a)
From specialfunctionswiki
(Redirected from Log a(z)=1/log b(a))
Theorem
The following formula holds: $$\log_a(b) = \dfrac{1}{\log_b(a)},$$ where $\log_a$ denotes logarithm base a.
Proof
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $4.1.20$