Logarithm (multivalued)
From specialfunctionswiki
The (multivalued) logarithm function $\mathrm{Log} \colon \mathbb{C} \rightarrow \mathscr{P}\left( \mathbb{C} \right)$ is defined by $$\mathrm{Log}(z)=\displaystyle\int_1^z \dfrac{1}{t} \mathrm{d}t,$$ where $\mathscr{P} \left( \mathbb{C} \right)$ denotes the power set of $\mathbb{C}$ and where we understand the integral $\displaystyle\int_1^z$ as a contour integral over a path from $1$ to $z$ that does not cross $0$.
Properties
Real and imaginary parts of log
Logarithm (multivalued) of product is a sum of logarithms (multivalued)
Logarithm (multivalued) of a quotient is a difference of logarithms (multivalued)
Relationship between logarithm (multivalued) and positive integer exponents
See Also
References
- 1964: {{ #if: |{{{2}}}|Milton Abramowitz}}{{#if: Irene A. Stegun|{{#if: |, {{ #if: |{{{2}}}|Irene A. Stegun}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Irene A. Stegun}}}}|}}: [[Book:Milton Abramowitz/Handbook of mathematical functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Handbook of mathematical functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Polar coordinates | ... (previous)|}}{{#if: Relationship between logarithm (multivalued) and logarithm | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: $4.1.4$